skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "DeBellevue, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 15, 2026
  2. Abstract In this article, we fix a prime integer p and compare certain dg algebra resolutions over a local ring whose residue field has characteristic p. Namely, we show that given a closed surjective map between such algebras there is a precise description for the minimal model in terms of the acyclic closure and that the latter is a quotient of the former. A first application is that the homotopy Lie algebra of a closed surjective map is abelian. We also use these calculations to show deviations enjoy rigidity properties which detect the (quasi-)complete intersection property. 
    more » « less
  3. We introduce a notion of sectional regularity for a homogeneous ideal I, which measures the regularity of its general sections with respect to linear spaces of various dimensions. It is related to axial constants defined as the intercepts on the coordinate axes of the set of exponents of monomials in the reverse lexicographic generic initial ideal of I. We show the equivalence of these notions and several other homological and ideal-theoretic invariants. We also establish that these equivalent invariants grow linearly for the family of powers of a given ideal. 
    more » « less